* Step 1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) from(mark(X)) -> mark(from(X)) from(ok(X)) -> ok(from(X)) length(ok(X)) -> ok(length(X)) length1(ok(X)) -> ok(length1(X)) proper(0()) -> ok(0()) proper(nil()) -> ok(nil()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {cons/2,from/1,length/1,length1/1,proper/1,s/1,top/1} / {0/0,active/1,mark/1,nil/0,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {cons,from,length,length1,proper,s ,top} and constructors {0,active,mark,nil,ok} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. 0_0() -> 2 0_1() -> 3 active_0(2) -> 2 active_1(2) -> 4 active_2(3) -> 5 cons_0(2,2) -> 1 cons_1(2,2) -> 3 from_0(2) -> 1 from_1(2) -> 3 length_0(2) -> 1 length_1(2) -> 3 length1_0(2) -> 1 length1_1(2) -> 3 mark_0(2) -> 2 mark_1(3) -> 1 mark_1(3) -> 3 nil_0() -> 2 nil_1() -> 3 ok_0(2) -> 2 ok_1(3) -> 1 ok_1(3) -> 3 ok_1(3) -> 4 proper_0(2) -> 1 proper_1(2) -> 4 s_0(2) -> 1 s_1(2) -> 3 top_0(2) -> 1 top_1(4) -> 1 top_2(5) -> 1 * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) from(mark(X)) -> mark(from(X)) from(ok(X)) -> ok(from(X)) length(ok(X)) -> ok(length(X)) length1(ok(X)) -> ok(length1(X)) proper(0()) -> ok(0()) proper(nil()) -> ok(nil()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {cons/2,from/1,length/1,length1/1,proper/1,s/1,top/1} / {0/0,active/1,mark/1,nil/0,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {cons,from,length,length1,proper,s ,top} and constructors {0,active,mark,nil,ok} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))